THE POTENTIAL OF DNA IN MICROELECTRONIC
OUTLINE

- Lithography challenges
- Bio inspired and bio-sourced patterning
- DNA: attractive brick for nano-paterning
- Sub-10 nm DNA based lithography
- DNA for Nano-packaging: a Promising Bottom-up Approach
Photolithography is a process used in microfabrication to pattern parts of a thin film. It uses light to transfer a geometric pattern from a photomask to a light-sensitive chemical "photoresist" (resist) on the substrate. (*wikipedia*)

Same mask used many times to print thousand of wafers

\[
CD = k_1 \frac{\lambda}{NA}.
\]

- **CD**: pattern resolution
- **\(\lambda\)**: exposure wavelength
 - *(193nm today in production)*
- **\(k_1, NA\)**: constants

Light wavelength dictates patterning resolution (diffraction limits)
Moore's law, enounced in 1965 by Gordon Moore, the co founder of Intel, is the observation that the number of transistors in a dense integrated circuit doubles approximately every two years.

After the 28nm node, we can continue to make transistors smaller, but not cheaper. EETimes
OUTLINE

- Lithography challenges
- Bio inspired and bio-sourced patterning
- DNA: attractive brick for nano-paterning
- Sub-10 nm DNA based lithography
- DNA for Nano-packaging: a Promising Bottom-up Approach
Water-Based Photo- and Electron-Beam Lithography Using Egg White as a Resist

Bojing Jiang, Jie Yang, Chen Li, Liangliang Zhang, Xu Zhang, and Peng Yang

UV exposure:
- 254nm wave length,
- 10min/2000µWcm⁻² + 10min/8000µW/cm⁻²
- Resolution: 5 µm (projection photomask)

E-Beam exposure:
- 30keV, 3000µCcm⁻²
- Resolution: 100nm lines

Etching transfer into Si/SiO₂/Au/Cu

Coast:
- HSQ Negativ resist: 25,17[g^{-1}]
- Egg whit resist: 0,37[$¢mL^{-1}$]
Self-assembly: a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. (wikipedia)
SELF-ASSEMBLY EVERYWHERE IN THE NATURE

BUT KEEP IN MIND HIGH RESOLUTION
NANOTECHNOLOGY: SIZE AND SCALE
WHAT IS DNA?

DNA: DeoxyriboNucleic Acid

- Is the hereditary material in almost all organisms.
- Nearly every cell in a person’s body has the same DNA.
- Is a double helix formed by base pairs attached to a sugar-phosphate backbone.

Source: www.compoundchem.com
DATA STORAGE WITH DNA

Nature 537, 22–24, 2016
doi:10.1038/537022a

<table>
<thead>
<tr>
<th></th>
<th>Hard disk</th>
<th>Flash memory</th>
<th>Bacterial DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read–write speed</td>
<td>~3,000–5,000</td>
<td>~100</td>
<td><100</td>
</tr>
<tr>
<td>(µs per bit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data retention</td>
<td>>10</td>
<td>>10</td>
<td>>100</td>
</tr>
<tr>
<td>(years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power usage</td>
<td>~0.04</td>
<td>~0.01–0.04</td>
<td><10⁻¹⁰</td>
</tr>
<tr>
<td>(watts per gigabyte)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data density</td>
<td>~10¹³</td>
<td>~10¹⁶</td>
<td>~10¹⁹</td>
</tr>
<tr>
<td>(bits per cm³)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WEIGHT OF DNA NEEDED TO STORE WORLD’S DATA
~1 kg
OUTLINE

- Lithography challenges
- Bio inspired and bio-sourced patterning
- DNA: attractive brick for nano-paterning
- Sub-10 nm DNA based lithography
- DNA for Nano-packaging: a Promising Bottom-up Approach
Pioneered by Seeman in the 80’s

Structural DNA Nanotechnology: State of the Art and Future Perspective, Fei Zhang et al, JACS 2014
DNA ORIGAMI HONEYCOMB 2D LATTICES

Collaboration with prof. Yonggang Ke, Emory university

Folding DNA to create nanoscale shapes and patterns

Paul W. K. Rothemund

Source https://www.youtube.com/watch?v=5yH5LTXxFzK
DNA 3D SELF-ASSEMBLY : ORIGAMI

Three-Dimensional Structures Self-Assembled from DNA Bricks. Yonggang Ke et al, Science 2012
OUTLINE

- Lithography challenges
- Bio inspired and bio-sourced patterning
- DNA: attractive brick for nano-paterning
- Sub-10 nm DNA based lithography
- DNA for Nano-packaging: a Promising Bottom-up Approach
I/ Design: cadnano

II/ Synthesis:

III/ Process:

1- DNA adsorption on Si-SiO₂
2- DNA pattern transfer by HF vapor etching
3- DNA mask removal

R.Tiron | MIDI MINATEC | April, 2017 | 20
SUB 10 NM PATTERN TRANSFERRED INTO SiO2

AFM images of DNA and SiO$_2$ substrate before and after HF vapor etching.

All values are given in nm. Scale bars: 50 nm.
COMPLEX STRUCTURE: VERSATILE PITCH AND RESOLUTION
HIGH ASPECT RATIO PATTERN TRANSFER BY DRY ETCH

1. Grafting of DNA origami (mask) on a thin layer of SiO₂/SiO

2. HF etching of SiO₂ substrate with a high resolution, high contrast and total transfer

3. Plasma Etching of Si substrate with a high resolution and high contrast

H = 1.7 ± 0.2 nm

H = 10.1 ± 0.2 nm

H = 65 ± 4 nm

CD-SEM image
OUTLINE

- Lithography challenges
- Bio inspired and bio-sourced patterning
- DNA: attractive brick for nano-paterning
- Sub-10 nm DNA based lithography
- DNA for Nano-packaging: a Promising Bottom-up Approach
DNA FOR NANO-PACKAGING: A PROMISING BOTTOM-UP APPROACH

DNA metallization process:
- **activation** step consisting in an exchange of metallic cations on the DNA backbone,
- cluster **NW growth** by electroless plating process,
- achievement of a uniform and **continuous metallic nanowire**.

C.Brun et al, IEEE Nanotechnology Magazine, Vol. 11 (1), 2017

AFM images after metalization

Christophe BRUN
Postdoc 2014-2016
METALLIC CONDUCTIVE NANOWIRES
BY METAL DEPOSITION ON SUSPENDED DNA BUNDLES

SEM images of the fabricated Ti/Au NWs from suspended DNA wires

I/V curve for 80-nm diameter metallic NWs

CONCLUSION

• High resolution high density versatile templates available with DNA origami.

• We demonstrated a sub-10-nm patterning with DNA origami template
 • First into SiO2 using HF vapor etching process for time ranging (3 to 10nm high)
 • Then by SiO2 hard mask into Si by dry etch (up to 60 nm high)

• Chemical electroless reduction and PVD metallization process: promising paths to fabricate gold electrical conductive NWs (diameter 80 nm)
NEXT GENERATION LITHOGRAPHY:

TOP-DOWN OR BOTTOM-UP

PROBABLY BOTH TOGETHER
Nano-bioreactor

Chem 2017 2, 359-382DOI: (10.1016/j.chempr.2017.02.009)

Nano fabrication

Cargo mimic

A DNA nanorobot

A drug in a box

Biosensing
Acknowledgements: Thomas Charvolin, Thierry Chevolleau, Pascal Mailley, Denis Mariolle, Guillaume Nonglaton, Francois Parcy, Nicolas Posseme, Patrick Reynaud, Christine Saint-Pierre, Aurelie Thuaire, Simona Torrengo

Financial support from the CEA Tech: A3DN Flagship Project Nanosciences Program