Smart biological films for orthopaedic implants

Catherine PICART
Grenoble Institute of Technology
Senior member of Institut Universitaire de France 2016-2021

Midi-Minatec – Friday Nov 10th 2017
Implants: Current medical practices for bone regeneration

Ceramics
- BONE GRAFTS
- Hydroxyapatite/
 Tricalcium phosphates
- Ca/P
- Osteo-conduction

Metals
- SPINE Plates
- Dental implant

Polymers
- SPINE Fusion cage
- Custom-made design
BMP : Body Morphogenetic Proteins

- **BMPs** – 25 family members
 - Induce bone formation
 - Ulrist, *Science* 1965
 - Clinics
 - BMP-2 (Medtronic – since 2003)
 - BMP-7 (Olympus Biotech – 2004/2014)

Brain
- BMP2, BMP4, Noggin
- Glioma, Alzheimer’s disease

Pulmonary artery
- BMP2, BMP4, BMP7
- PAH

Heart
- BMP2, BMP4, BMP10, GDF15
- Hypertrophy, PAH

Kidney
- BMP7, USAG1
- Chronic renal diseases, renal fibrosis

Pancreas
- BMP6
- Diabetes

Gastrointestinal tract
- BMP2, Noggin
- JPS, colorectal cancer

Muscle
- BMP2, myostatin
- Muscular dystrophy, FOP

Bone and joint
- BMP2, BMP7, GDF5
- Osteoporosis, arthritis

P. Knaus, *Science Signalling* 2010
Bone regeneration is a time-regulated process

BMP-2 present in all steps of the repair

Challenges
- Boost bone regeneration (kinetics)
- Struture of new bone (maturation)
- Avoid bacterial infection/side effets (safety)

Improved patient’s quality of life
Decrease societal cost (hospital stay)

From Reis RL et al. Tissue Eng. B 2013
In situ bone tissue engineering

- IMPLANT + BMPs

- **Nanoreservoir**
- **Spatially localized delivery**

- **FILM**

- **Stem cells**
Polyelectrolyte multilayer films as surface coating

- Very simple self-assembly process

 Substrate (titanium, glass, gold…)
 Decher, Science, 1997
 Caruso, Science 2014

 Advantages:
 - Versatility (self-assembly, building blocks)
 - Applicable to any type of substrate
 - Aqueous process (green)
 - Cost effective

Different forms:

- Cell sheets
- Cell coating
- Hollow capsules

ETH Zurich
USA, Japan
Germany, Australia, China, Portugal

Surface coating of implants

Engineering of BMP nanoreservoir Poly(L-lysine)/Hyaluronan multilayer films

1. Biomimetic film
 - Dip coating
 - Number layers tunable

Poly(L-lysine) (PLL)
- Polyamino acid

Hyaluronan (HA)
- Cartilage, skin, eye and synovial fluids...
- Used in bone & cartilage tissue eng, plastic surgery

Robot
Confocal microscopy vertical section
PLL $^{	ext{FITC}}$

~ 1.5 µm to 5 µm
EDC cross-linking of (PLL/HAl films

1. Biomimetic film 2. EDC Cross-linking

Chemical : FTIR spectroscopy

% reduction in COO- vs EDC concentration (mg/mL)

Mechanical: AFM nano-indentations

Elastic modulus E0 (kPa) vs EDC concentration (mg/mL)

From ~ 5 kPa to 500 kPa

Covalent amide bond

COO- + NH3+
Tunable doses of BMP-2 in loaded in nanoreservoir

1. Biomimetic film
2. EDC Cross-linking
3. Post-loading of BMPs

BMP-2 loading

Depends on [BMP-2]i

BMP-2 release

BMP release depends on EDC

Crouzier et al. Small, 2009; Bouyer et al, Biomaterials, 2016
BMP-2 delivery to cells: soluble versus matrix-bound

Cell Biology
Soluble BMP-2
sBMP-2

Materials Science
Matrix-bound BMP-2
bBMP-2

<table>
<thead>
<tr>
<th>BMP-2</th>
<th>Stiffness</th>
<th>Presentation</th>
<th>Lifetime</th>
<th>Diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fixed</td>
<td>Soluble</td>
<td>~13h</td>
<td>Free</td>
</tr>
</tbody>
</table>

Biophysical studies
Engineered biomaterials and biomimetic plateforms to understand cell signalling by bBMP-2

In collaboration with IAB Grenoble
Team DYSAD
Corinne Albiges-Rizo
Laure Fourel
Amaris Guevera
Olivier Destaing
Cyril Boyault

C. ALBIGES-RIZO
L. FOUREL
bBMP-2 delivered by the films is bioactive

Biomimetic film

SMAD

- sBMP-2 bBMP-2

pSMAD

actin

Shore EM, Nat Rev Rheumat. 2010

BMP-2

ALP

Crouzier et al. Small. 2009 + Patent
bBMP-2 is internalized by cells
Understanding the molecular mechanisms leading cell differentiation to bone

Cooperation between BMPR and adhesion receptors

Micropatterning for single cell studies

Bone tissue engineering

Implant + Matrix-bound BMP-2

BIOPHYSICS
MOLECULAR
MECHANISM

REGENERATIVE
MEDICINE
BONE
REGENERATION

M. BOUYER
CHU-GA

V. LAFONTAINE
CHU-GA

R. GUILLOT

I. PAINTRAND

P. MACHILLOT

J. LIU

In collaboration with

G. BETTEGA
CHR Annecy

JL COLL
IAB Grenoble

V JOSSE RAND
IAB Grenoble

F. PEYRIN
ESRF Grenoble

D. LOGEART
Paris
Can we repair bone with the bioactive film coating containing bBMP-2?

1. OSTEOINDUCTION
 Rat muscle
 ectopic bone induction
 6 weeks

2. BONE REPAIR
 Rat femur
 Bone regeneration
Osteoinduction in ectopic site (intramuscular in rat)

TCP/HAP granules
From Medtronic

Granule + film bBMP-2

 Titanium alloy

Ti + film

Ti + film bBMP-2

Bone

Repair of a critical size femoral defect (rat) using a hollow tube

Lactosorb® PLGA
Maxillo-facial surgery (1996)

Diagram A
- PLGA sheet
- Cutting
- Heating
- Molding
- Film buildup
- Crosslinking

Diagram B
- BMP-2 loading
- 6 mm defect
- Implantation for 2 months

Diagram C
- Analysis: X-rays, microcomputed tomography, histology
Pre-screening of BMP-2 dose

<table>
<thead>
<tr>
<th>EDC (mg/mL)</th>
<th>BMP (µg/mL)</th>
<th>5</th>
<th>25</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bony shell

n=2 per group

Negative controls
- No implant (n=2)
- Bare PLGA (n=8)
- PLGA + ads BMP-2 (n=8)
Dose-dependent regeneration of femoral bone

PLGA

BMP2

Bone volume ratio

BMP25 BMP50 BMP100

Bouyer, M. Biomaterials, 2016
Histology: bone maturation and vascularization

Vascularization

PLGA / film - interface

Endothelial cells

vessels / red blood cells

Polarized microscopy

Cortical bone

PLGA tube

rbc
New bone imaged by high resolution µCT

ESRF

BMP25 BMP50

Cortical bone

Around the tube

Trabecular bone

Inside the tube

Cortical bone

BMP25 BMP50

B

Ct - bone volume (mm³)

0 5 10 15 20 25 30

**

200 250 300 350

C

Ct - thickness (µm)

150

BMP25 BMP50

*
In summary

- An osteoinductive surface (2D) combined with a hollow PLGA tube can regenerate a VOLUMIC critical size bone defect (3D).

- The new bone v depends on the BMP-2 dose delivered via the film.

- Both cortical & trabecular bones are formed + vascularization.

Perspectives in personalized medicine

Modularity: customized implants / optimized BMP-2 dose
Acknowledgements

IAB
Jean-Luc COLL
Véronique JOSSERAND
Jonathan LAVAUD

ESRF
Françoise PEYRIN
Cécile OLIVIER

CHU- GA
Georges BETTEGA
Jean BOUTONNAT
Véronique CURRI

Infrastructure d’Avenir en Biologie Santé
ANR 11 INBS 44 0006

INPG
Vincent FITPATRICK
Isabelle PAINTRAND
Michael BOUYER
Virginie LAFONTAINE
Paul MACHILLOT
Elisa MIGLIORINI
Jie LIU

Alumni
Raphael GUILLOT
Flora GILDE
Jorge ALMODOVAR
Thomas BOUDOUC
Cédric PLETTINX

IAB
Corinne ALBIGES-RIZO
Olivier DESTAING
Laure FOUREL

IAB
Jean-Luc COLL
Véronique JOSSERAND
Jonathan LAVAUD

LB20
Delphine LOGEART-AVRAMOGLOU
Pierre BECQUART
Adeline DECAMBRON