Starting from the first papers1,2 which demonstrated the potential of gold catalysis for organic transformations with a high increase of molecular complexity, homogeneous gold catalysis has emerged to a precious, frequently used tool in organic synthesis.3,4 Among the many new methods and reactivity patterns developed in the last 18 years in the field, a highly useful and versatile aspect was the in situ generation and synthetic exploitation of α-ketocarbene gold(I) intermediates from alkynes and pyridine-N-oxides as reagents by Liming Zhang.5,6 These innovative methods have also been used7 and further developed by our group.8,9

Now we were interested in the use of the corresponding α-iminocarbene gold(I) intermediates for complex organic conversions. Instead of an O-transfer reagent, now an N-transfer reagent will be needed.10 This indeed can be achieved by a number of different nitrogen heterocycles as building blocks for different types complex and highly functionalized products (for examples, see Figure 1).

Furthermore, even a selective access to specific quinoxaline N-oxides, which are not selectively accessible by oxidation of quinoxalines, can be opened by such methods. This is quite remarkable, as usually such N-oxides in transition metal catalysis are reactive reagents rather than isolable products.

Figure 1. New reactivity patterns involving α-iminocarben gold(I) intermediates (PG = protecting group)

References
\begin{enumerate}
\end{enumerate}

Corresponding author email: hashmi@hashmi.de