Twinned Gold Nanoparticles under Growth: Bipyramids Shape Controlled by Environment


(1) CEA Saclay, UMR CEA/CNRS 3685 NIMBE/LIONS, Gif sur Yvette, France
(2) Université Pierre et Marie Curie, IMPMC, UMR 7590 CNRS, Paris, France
(3) INSP, CNRS, UPMC, UMR7588, Paris, France
(4) IPCMS, UMR 7504, CNRS ULP, Strasbourg, France
(5) Université Paris Diderot-Paris7, LMPQ, Paris, France
(6) CeNS, Ludwig Maximilians University Munich, Germany

The control of shape and size of anisotropic gold nanoparticles (NPs) was at the center of intense research in the last 20 years in regards to their unique physical and chemical properties [1]. If control of size is nowadays achieved, questions about the mechanism promoting the anisotropy (in particular when considering the materials crystallizing in bulk in a FCC phase) are still under debate [2]. In this context, the structure of (Au) bipyramids, very promising for their specific plasmonic properties, was fully analyzed for gradual stages of growth [3]. The atomic structure of the elongated object in formation was extracted thanks to the use of HRTEM (High resolution transmission electronic microscopy) in specific conditions and SAED (selected area electronic diffraction) analysis (fig. 1). The conservation of a bulk penta-twinned structure inherited from isotropic decahedral (i-Dh) seeds all along the growth is observed for two different synthetic conditions: silver(I)-assisted or without silver seeded growth method. The key role of the initial structure of seeds in the orientation of the final shape is discussed in the framework of a recent atomistic approach [4] developed for metal-environment interactions to account for the stability of multi-twinned nanorods or bipyramids in a complex environment.

![Figure 1. Schematic view of the successive steps of growing penta-twinned NPs into bipyramids.](image)

References

Corresponding author email: fabienne.testard@cea.fr