Selective Catalytic Oxidation of Trimethylamine over Support Gold Catalysts at Low Temperature

Baoxiang An1, Mingyue Lin1, Nao Niimi2, Yohei Jikihara3, Tsuruq Nakayama2, Tamao Ishida1, Masatake Haruta1, Toru Murayama1

1) Research Center for Gold Chemistry, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
2) NBC Meshtec Inc., 2-50-3 Toyoda, Hino, Tokyo, 191-0053, Japan

Trimethylamine (N(CH$_3$)$_3$), a nitrogen-containing volatile organic compounds with a strong fishy odor at low concentrations and an ammonia-like odor at higher concentrations, has been considered to be a strong environmental pollutant because of its moderately toxic by inhalation and its likely carcinogenic properties. Selective catalytic oxidation (SCO) of N(CH$_3$)$_3$ to harmless products at low temperatures has been considered to one of the most promising method to remove N(CH$_3$)$_3$. Au/NiFe$_2$O$_4$ has been reported to give a T$_{1/2}$ of 115$^\circ$C which was the most active and selective catalyst ever reported for N(CH$_3$)$_3$-SCO while N$_2$O was mostly produced over Pd and Pt catalysts even at higher temperatures1. On the aspect of saving energy and producing environment-friendly products, it is essential to develop efficient catalysts for low-temperature N(CH$_3$)$_3$-SCO.

The catalytic activity depends on both the size of gold nanoparticles and the type of supported metal oxides. CeO$_2$ which is a reducible metal oxide with high oxygen storage capacity and an acidic metal oxide Nb$_2$O$_5$ were chosen as the supports because N(CH$_3$)$_3$ belongs to amine group. CeO$_2$ with two different BET surface area of 114 m2/g and 20 m2/g (denoted as CeO$_2$-114 and CeO$_2$-20) were used as the supports. Au/CEO$_2$ catalysts were prepared by deposition precipitation method2. Nb$_2$O$_5$ with two different crystal structures (layered-structure-type and amorphous, denoted as Nb$_2$O$_5$-L and Nb$_2$O$_5$-A) were chosen as the supports and Au/Nb$_2$O$_5$ catalysts were prepared by sol immobilization method2,3. The amount of catalyst used was 0.15 g. The reactant gas contained 50 ppm N(CH$_3$)$_3$ and 20% O$_2$ balanced with Ar was passed through the catalytic bed.

As shown in Fig.1, the catalytic activity decreased in the order of Au/Nb$_2$O$_5$-L > Au/Nb$_2$O$_5$-A > Au/CEO$_2$-114 > Au/CEO$_2$-20. Au/Nb$_2$O$_5$-L showed the highest catalytic activity for N(CH$_3$)$_3$ oxidation that can be attributed to the lattice oxygen species on Au/Nb$_2$O$_5$-L which is good for the formation of active atomic oxygen species. Moreover, Au/Nb$_2$O$_5$-L showed a very good selectivity to N$_2$ with yielding zero NH$_3$ and N$_2$O while NH$_3$ and N$_2$O were mostly produced over Au/CEO$_2$-114 and Au/CEO$_2$-20 at T$_{1/2}$. Besides, Nb$_2$O$_5$-L and Nb$_2$O$_5$-A showed no catalytic activity for N(CH$_3$)$_3$ oxidation from temperatures ranging from 25$^\circ$C to 140$^\circ$C which indicated that catalytic activity was significantly enhanced by the deposition of Au nanoparticles. In conclusion, Au/Nb$_2$O$_5$-L is the promising candidates for realizing N(CH$_3$)$_3$-SCO at low temperature.

Figure 1. Effect of reaction temperatures on N(CH$_3$)$_3$ conversion over different metal oxide supported gold catalytic. The gold loading amount is 1wt%.

References

Corresponding author email: murayama@tmu.ac.jp